6. CABLE TYPES AND SELECTION CRITERIA

6.1	Portable Power and Control				
	6.1.1 Flexible Cords	71			
	6.1.2 Mining Cable	72			
6.2	Construction and Building Wire	72			
6.3	Control, Instrumentation and Thermocouple				
	6.3.1 Control Cable	73			
	6.3.2 Instrumentation Cable	73			
	6.3.3 Thermocouple Wire	74			
6.4	High Temperature	75			
6.5	Power				
	6.5.1 Voltage Rating	76			
	6.5.2 Conductor Size	76			
	6.5.3 Short Circuit Current	76			
	6.5.4 Voltage Drop Considerations	77			
	6.5.5 Special Conditions	77			
6.6	Armored Power and Control	78			
6.7	Electronic Cable				
	6.7.1 Coaxial Cable	78			
	6.7.2 Twinaxial Cable (Twinax)	80			
	6.7.3 UTP and STP	80			
	6.7.4 IBM Cabling System	82			

6.8	Telephone	
	6.8.1 Outside Cables	83
	6.8.2 Indoor Cables	83
	6.8.3 Insulation and Jacket Materials	84
6.9	Military	84
6.10	Shipboard Cables (MIL-DTL-24643, MIL-DTL-24640 and MIL-DTL-915)	85
6.11	Optical Fiber Cables	
	6.11.1 Fiber Types	86
	6.11.2 Fiber Selection	86
	6.11.3 Optical Fiber Cable Selection	87
6.12	Tray Cables	88

6.1 PORTABLE POWER AND CONTROL

6.1.1 Flexible Cords

Flexible cords come in a number of UL and CSA types including S0, S0W, S0W, SJ, SJ0, SJ0W, STO and SJTO. In portable cord terminology, each letter of the cable type indicates the construction of the cable. For example: S = service, 0 = oil-resistant jacket, J = junior service (300 volts), W = weather resistant, T = thermoplastic, and 00 = oil-resistant insulation and jacket.

The temperature rating of these cables can range from -50°C to +105°C for S00W and -37°C to +90°C for other thermoset cords. Thermoplastic cords typically have temperature ratings that range from -20°C to +60°C. Thermoset portable cords have excellent cold bend characteristics and are extremely durable.

Table 6.1–Flexible Cord Type Designations

TST SPT-1 SPT-2	Tinsel Service Thermoplastic Service Parallel Thermoplastic $-1/64^{\prime\prime}$ Insulation Service Parallel Thermoplastic $-2/64^{\prime\prime}$ Insulation
SPT-3 SPE-1 SPE-2	Service Parallel Thermoplastic $-3/64^{\rm "}$ Insulation Service Parallel Elastomer $-1/64^{\rm "}$ Insulation Service Parallel Elastomer $-2/64^{\rm "}$ Insulation
SPE-3	Service Parallel Elastomer — 3/64" Insulation
SV	Service Vacuum
SVO	Service Vacuum Oil-Resistant Jacket
SVOO	SVO with Oil-Resistant Insulation
SVT	Service Vacuum Thermoplastic
SVTO	SVT with Oil-Resistant Jacket
SVTOO	SVTO with Oil-Resistant Insulation
SVE	Service Vacuum Elastomer
SVEO	SVE with Oil-Resistant Jacket
SVEOO	SVEO with Oil-Resistant Insulation
SJ	Service Junior
SJO	SJ with Oil-Resistant Jacket
00L2	SJO with Oil-Resistant Insulation
W00L2	Weather Resistant SJOO
TL2	Service Junior Thermoplastic
SJTO	SJT with Oil-Resistant Jacket
SJTOO	SJTO with Oil-Resistant Insulation
SJTOOW	Weather-Resistant SJTOO
SJE	Service Junior Elastomer
SJEO	SJE with Oil-Resistant Jacket
SJEOO	SJEO with Oil-Resistant Insulation
SJEOOW	Weather Resistant SJEOO
S	Service
SO	Service with Oil-Resistant Jacket

Continued on next page >>

Table 6.1–Flexible Cord Type Designations (Continued)

SOO	SO with Oil-Resistant Insulation
SOOW	Weather-Resistant SOO
ST	Service Thermoplastic
STO	ST with Oil-Resistant Jacket
STOO	STO with Oil-Resistant Insulation
STOOW	Weather-Resistant STOO
SE	Service Elastomer
SEO	SE with Oil-Resistant Jacket
SEOO	SEO with Oil-Resistant Insulation
SEOOW	Weather-Resistant SEOO
HPN	Heater Parallel Neoprene
HSJ	Heater Service Junior
HSJO	HSJ with Oil-Resistant Jacket

6.1.2 Mining Cable

Mine power cables are generally designed to be used as flexible feeder cables for circuits between the main power source and mine load centers or as equipment trailing cables.

Mine power feeder (MPF) cables typically have voltage ratings of 5, 8, 15 or 25 kV and are available with or without a ground check conductor. A ground check (GC) conductor is a separate insulated ground wire that is used to monitor the "health" of the normal ground wire. MPF cables are flexible but are designed for only limited or occasional movement.

Shovel (SHD) cables are generally used to power heavy duty mobile mining equipment. SHD cables are unique in that they not only carry voltage ratings up to 25 kV but also have great flexibility and incredible physical toughness. Like mine power cables, SHD cables are generally available with or without a ground check conductor.

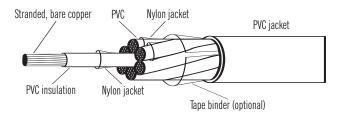
For low-voltage applications, there are a number of portable cables used by the mining industry. Among the most common are Type W and Type G. Both cables are a heavy-duty construction, can withstand frequent flexing and carry a voltage rating of up to 2 kV.

6.2 CONSTRUCTION AND BUILDING WIRE

Construction and building wire encompasses a wide variety of 300- and 600-volt wire and cable including UL Types THW, THW-2, THWN, THWN-2, THHN, TFFN, TFN, RHH, RHW, RHW-2, USE, USE-2, thermostat wire, SER, SE-U, XHHW, XHHW-2 and others. This category of wire is typically used as the permanent wiring in residential, commercial and industrial facilities. UL types with a "-2" suffix are rated 90°C in both dry and wet locations. In building wire terminology, each letter of the wire type indicates something about the construction. For example:

THHN – Thermoplastic, High Heat resistant, Nylon jacket

- THWN-2 Thermoplastic, Heat resistant, Wet and dry locations (-2 means 90°C wet), Nylon jacket
- XHHW-2 Cross-linked (X) insulation, High Heat resistant, Wet and dry locations (-2 means 90°C wet)
- RHHW-2 Rubber insulation, High Heat resistant, Wet and dry locations (-2 means 90°C wet)
- USE-2 Underground Service Entrance wire (-2 means 90°C wet)


6.3 CONTROL, INSTRUMENTATION AND THERMOCOUPLE

6.3.1 Control Cable

Control cables differ from power cables in that they are used to carry intermittent control signals, which generally require little power. Therefore, current loading is rarely a deciding factor in the choice of control cable. Primary criteria that are applied to the selection of control cable are voltage level and environmental conditions. The voltage level for control circuits may range anywhere from millivolts up to several hundred volts.

Environmental Conditions

Control cables are generally subject to rather severe environmental conditions. For this reason an examination of these conditions is at least as important as electrical considerations. High ambient temperature conditions (such as near boilers and steam lines), along with possible exposure to oils, solvents and other chemicals (in chemical, petroleum, steel, pulp and paper and cement plants), are vital considerations.

Figure 6.1–A Typical 600 V Control Cable

6.3.2 Instrumentation Cable

Instrumentation cable is generally used to transmit a low-power signal from a transducer (measuring for example, pressure, temperature, voltage, flow, etc.) to a PLC or DCS process control computer or to a manually operated control panel. It is normally available in 300- or 600-volt constructions with a single overall shield, or with individual shields over each pair (or triad) and an overall shield.

Figure 6.2-Control Cable with Overall Shield

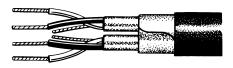
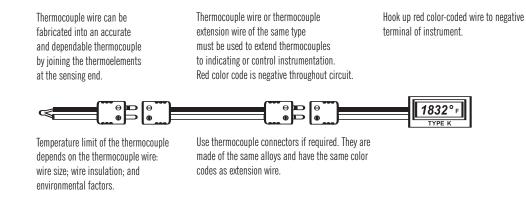


Figure 6.3-Control Cable with Individually Shielded Pairs and An Overall Shield

6.3.3 Thermocouple Wire

A thermocouple is a temperature measuring device consisting of two conductors of dissimilar metals or alloys that are connected together at one end. At this thermocouple junction, as it is called, a small voltage is produced. Electronic equipment senses this voltage and converts it to temperature. Thermocouple wire is available in either thermocouple grade or extension grade. Extension grade wire is normally lower in cost and is recommended for use in connecting thermocouples to the sensing or control equipment. The conditions of measurement determine the type of thermocouple wire and insulation to be used. Temperature range, environment, insulation requirements, response and service life should be considered. Note that thermocouple wire color codes can vary around the world.

Thermocouple Types


Type J (Iron vs Constantan) is used in vacuum, oxidizing, inert or reducing atmospheres. Iron oxidizes rapidly at temperatures exceeding 538°C (1,000°F), and therefore heavier gauge wire is recommended for longer life at these temperatures.

Type K (Chromel vs Alumel) is used in oxidizing, inert or dry reducing atmospheres. Exposure to a vacuum should be limited to short time periods. Must be protected from sulfurous and marginally oxidizing atmospheres. Reliable and accurate at high temperatures.

Type T (Copper vs Constantan) is used for service in oxidizing, inert or reducing atmospheres or in a vacuum. It is highly resistant to corrosion from atmospheric moisture and condensation and exhibits high stability at low temperatures; it is the only type with limits of error guaranteed for cryogenic temperatures.

Type E (Chromel vs Constantan) may be used in oxidizing, inert or dry reducing atmospheres, or for short periods of time under vacuum. Must be protected from sulfurous and marginally oxidizing atmospheres. Produces the highest EMF per degree of any standardized thermocouple.

Type R and S (Platinum vs Rhodium) are used in oxidizing or inert atmospheres. Must be protected from contamination. Reliable and accurate at high temperatures.

Source: PMC Corporation

Figure 6.4–A Typical Thermocouple Circuit

Table 6.2-Color Code for Thermocouple Wire Per ANSI/ISA MC96.1

Thermocouple Type		Color Cod	le
Wire Alloys	ANSI Symbol	+/— Individual	Jacket
*Iron (+) vs Constantan (—) Chromel (+) vs *Alumel (—) Copper (+) vs Constantan (—)	J K T	White/Red Yellow/Red Blue/Red	Brown Brown Brown
Chromel (+) vs Constantan (—) Platinum (+) vs 13% Rhodium (—) Platinum (+) vs 10% Rhodium (—)	E R S	Purple/Red 	Brown

*Magnetic

Table 6.3-Color Code for Thermocouple Extension Wire Per ANSI/ISA MC96.1

Thermocouple Type	Color Cod	e	
Wire Alloys	ANSI Symbol	+/— Individual	Jacket
*Iron vs Constantan	JX	White/Red	Black
Chromel vs *Alumel	KX	Yellow/Red	Yellow
Copper vs Constantan	TX	Blue/Red	Blue
Chromel vs Constantan	EX	Purple/Red	Purple
Platinum vs 13% Rhodium (—)	RX	Black/Red	Green
Platinum vs 10% Rhodium (—)	SX	Black/Red	Green

*Magnetic

6.4 HIGH TEMPERATURE

High temperature generally refers to wire or cable with a temperature rating of 125°C (257°F) or higher. The table below lists some of the most common high-temperature wire and cable types along with their temperature rating.

Table 6.4-High-temperature Wire and Cable

°C	°F	Туре
538	1,000	MG (Non-UL)
450	842	MG (UL Style 5107)
250	482	TGGT (UL Styles 5196 and 5214), TKGT (UL Style 5214) TMMG, TCGT (UL Style 5288)
200	392	SRG (UL Styles 3071, 3074, 3075, 3125, 3172 and 3231), SRK, SRGK and UL Types SF-2 and SFF-2
150	302	SRG, TGS and UL Styles 3212, 3213 and 3214
125	257	UL Style 3284 and CSA CL1254

6.5 POWER

Below are some of the key considerations when selecting a power cable:

- System voltage
- Current loading (ampacity)
- External thermal conditions such as ambient temperature, proximity of other cables, adjacent sources of heat, thermal conductivity of soil, etc.
- Voltage drop
- Special conditions, such as the presence of corrosive agents, flexibility and flame resistance

6.5.1 Voltage Rating

The system voltage on which the cable is to operate determines the required cable voltage rating. Cables rated 5 kV and above are separated into two classifications: grounded systems (100 percent insulation level) and ungrounded systems (133 percent insulation level). In case of a phase-to-ground fault in a three-phase system, it is possible to operate ungrounded systems for up to one hour with one conductor at ground potential. This condition results in full line-to-line voltage stress across the insulation of each of the other two conductors. For this reason each conductor of such a circuit must have additional insulation. Cables designed for use on grounded systems take advantage of the absence of this full line-to-line voltage stress across the insulation and use thinner insulation. The direct result of such a design is lower cost, as well as reduced cable diameter.

A recent change in the NEC now requires all cables operating above 2,400 volts in the U.S. to be shielded.

6.5.2 Conductor Size

Conductor size is based principally on three considerations:

- Current-carrying capacity (ampacity)
- Short-circuit current
- Voltage drop

The current-carrying capacity of a cable is affected primarily by the permissible operating temperature of its insulation. The higher the operating temperature of the insulation, the higher the current-carrying capacity of a given conductor size. The temperature at which a particular cable will operate is affected by the ability of the surrounding material to conduct away the heat. Therefore, the current-carrying capacity is materially affected by the ambient temperature as well as by the installation conditions. For example, a cable installed in a 40°C ambient temperature has an ampacity that is only about 90 percent of the ampacity in a 30° C ambient.

Running a single-conductor cable through a magnetic conduit will increase the apparent resistance of the cable and will also result in a lower current-carrying capacity due to the additional resistance and magnetic losses. Similarly, when a cable is run close to other cables, the presence of the other cables effectively increases the ambient temperature, which decreases the ability of the cable to dissipate its heat. It is apparent from the above that many conditions must be known before an accurate current-carrying capacity can be determined for a particular cable installation.

Occasionally, emergency overload conditions are also involved and may affect conductor size.

6.5.3 Short Circuit Current

A second consideration in selection of conductor size is that of the short circuit current, which the cable must be able to carry in an emergency. From a thermal standpoint there is a limit to the amount of short-circuit current that a cable can handle without damage.

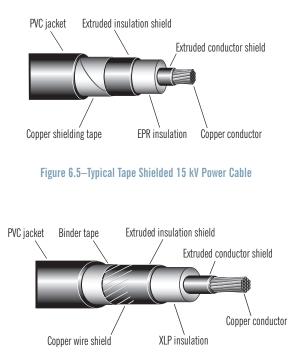


Figure 6.6–Typical Wire Shielded 15 kV Power Cable

6.5.4 Voltage Drop Considerations

Cable conductor size is sometimes governed by voltage drop rather than by heating. Generally, conductor size on long, low-voltage lines is governed by voltage drop; on short, high-voltage lines by heating. Due to voltage drop considerations, it might be necessary to increase conductor size, even though the current load is adequately handled by a smaller size conductor.

6.5.5 Special Conditions

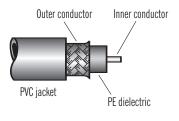
The following are only a few of the many special conditions that may affect cable selection:

- The presence of large sources of heat (boilers, steam lines, etc.)
- The effect of magnetic materials such as pipes or structural members close to large cables carrying heavy current loads
- The presence of corrosive chemicals in the soil or other locations in which the cable is installed
- The interference that may occur in telecommunication circuits because of adjacent power cables
- Flame and radiation resistance
- Mechanical toughness
- Moisture resistance
- · Overload and fault current requirements

All special conditions should be carefully investigated, and the advice of competent engineers obtained, before proceeding with an important cable installation.

6.6 ARMORED POWER AND CONTROL

Armored cables comprise a group of cables that are designed to withstand severe mechanical and chemical environments. For information on the various types and their applications, see Section 5 on armor.


6.7 ELECTRONIC CABLE

This category of wire and cable covers thousands of small gauge single-conductor wire types along with many types of multiconductor cables. These basic types come in various combinations of stranding, insulation material, conductor count, jacket material, etc. Some common types and key characteristics are described below.

6.7.1 Coaxial Cable

A coaxial cable consists of four basic parts:

- Inner conductor (center conductor)
- Outer conductor (shield)
- Dielectric, which separates the inner and outer conductors
- · Jacket, which is the outer polymer layer protecting the parts inside

Characteristic Impedance

The characteristic impedance of a coaxial cable is a function of its geometry and materials. Characteristic impedance is independent of length and typically ranges from 35 to 185 ohms. The most common values are 50, 75 and 93 ohms. The characteristic impedance of a cable should not be confused with the impedance of the conductors in a cable, which is dependent on length.

The most efficient transfer of energy from a source to a load occurs when all parts of the system have the same characteristic impedance. For example, a transmitter, interconnecting cable and receiver should all have the same impedance. This need for impedance matching is especially critical at higher frequencies, where the consequences of mismatches are more severe.

VSWR

The Voltage Standing-Wave Ratio (VSWR) is a measure of the standing waves that result from reflections. It expresses the uniformity or quality of a cable's characteristic impedance. Uniformity is also measured as structural return loss (SRL).

Velocity of Propagation

Velocity of propagation is the speed at which electromagnetic energy travels along the cable. In free space or air, electromagnetic energy travels at the speed of light, which is 186,000 miles per second. In other materials, however, the energy travels slower, depending on the dielectric constant of the material. Velocity of propagation is expressed as a percentage of the speed of light. For example, a velocity of 65 percent means that the energy travels at 120,900 miles per second – or 35 percent slower than in free space.

The dielectric (insulation) separating the two conductors determines the velocity of propagation. Although the electromagnetic energy travels in the dielectric, the current associated with the energy travels primarily on the outside of the center conductor and the inside of the outer conductor (shield). The two conductors bind the energy within the cable. Consequently, the quality of the dielectric is important to efficient, speedy transfer of energy. Speed is important to engineers who must know the transit time of signals for digital transmission.

Voltage Rating

This is the maximum voltage the cable is designed to handle.

Operating Temperature Range

This is the minimum and maximum temperatures at which the cable can operate.

Coaxial Types

The following paragraphs describe four common types of coaxial cable.

Flexible Coax

The most common type, flexible coax has a braided outer conductor (shield) of extremely fine wires. While the braid makes the cable flexible, it does not provide complete shielding — energy (RF signals) can leak through the shield via minute gaps in the braid. To combat this, many cables have several layers in the outer conductor. In addition, thin foils are sometimes used to supplement the braid to provide better coverage for greater shielding effectiveness. The greater the coverage, the better the shield.

Semirigid Coax

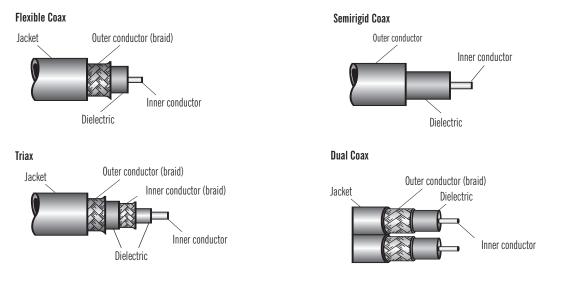
Semirigid coax has a solid, tubular metallic outer conductor, similar to a pipe. This construction gives the cable a very uniform characteristic impedance (low VSWR) and excellent shielding, but at the expense of flexibility.

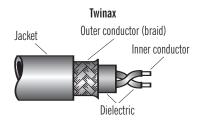
Triaxial Cable (Triax)

This coax has two outer conductors (shields) separated by a dielectric layer. One outer conductor (shield) serves as a signal ground, while the other serves as earth ground, providing better noise immunity and shielding. One caution: Do not confuse a flexible cable having a multilayer outer shield with triaxial cable.

Dual Coax

This cable contains two individual coaxial cables surrounded by a common outer jacket.




Figure 6.8–Common Types of Coaxial Cable


```
6. Cable Types and Selection Criteria
```

6.7.2 Twinaxial Cable (Twinax)

Twinax has a pair of insulated conductors encased in a common outer conductor (shield). The center conductors may be either twisted or run parallel to one another. In appearance, the cable is often similar to a shielded twisted pair, but it is held to the tighter tolerances common to fixed-impedance coaxial cable. A common use of twinax is high-speed, balanced-mode multiplexed transmission in large computer systems. Balanced mode means that the signal is carried on both conductors, which provides greater noise immunity.

Figures 6.9–A Typical Twinaxial Cable

6.7.3 100 ohm Twisted Pair Cable

100 ohm unshielded twisted pair (UTP) and shielded twisted pair are low pair count cables (usually 4 pairs) that have been designed for use in local area networks such as Ethernet. Because of their relatively low cost these cable types are widely used and are available in several different performance categories (levels) – currently Categories 3, 5e, 6 and 6A. Insertion loss, crosstalk, impedance and other electrical parameters are specified in TIA/EIA-568-B.2 and its related addenda. A summary of their electrical requirements are shown below.

	,	
Frequency (MHz)	Insertion Loss (dB)	NEXT (

Table 6 5—Category 3 Performance (100 meters)

Frequency (MHz)	Insertion Loss (dB)	NEXT (dB)	PSNEXT (dB)
0.772	2.2	43.0	43
1.0	2.6	40.3	41
4.0	5.6	32.3	32
8.0	8.5	27.8	28
10.0	9.7	26.3	26
16.0	13.1	23.2	23

Maximum propagation delay: 545 ns/100 m at 10 MHz Maximum delay skew: 45 ns/100 m at 16 MHz Characteristic impedance: 100 ± 15 ohms from 1 to 16 MHz

Frequency	Insertion Loss	NEXT	PSNEXT	ELFEXT	PSELFEXT	Return Loss
(MHz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)
0.772	1.8	67.0	64.0			19.4
1.0	2.0	65.3	62.3		60.8	20.0
4.0	4.1	56.3	53.3		48.8	23.0
8.0	5.8	51.8	48.8	45.7	42.7	24.5
10.0	6.5	50.3	47.3	43.8	40.8	25.0
16.0	8.2	47.2	44.2	39.7	36.7	25.0
20.0	9.3	45.8	42.8	37.8	34.8	25.0
25.0	10.4	44.3	41.3	35.8	32.8	24.3
31.25	11.7	42.9	39.9	33.9	30.9	23.6
62.5	17.0	38.4	35.4	27.9	24.9	21.5
100.0	22.0	35.3	32.3	23.8	20.8	20.1

Table 6.6-Category 5e Performance (100 meters)

Maximum propagation delay: 538 ns/100 m at 100 MHz Maximum delay skew: 45 ns/100 m at 100 MHz

Table 6.7–Category 6 Performance (100 meters)

Frequency	Insertion Loss	NEXT	PSNEXT	ELFEXT	PSELFEXT	Return Loss
(MHz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)
0.772	1.8	76.0	74.0	70.0	67.0	19.4
1.0	2.0	74.3	72.3	67.8	64.8	20.0
4.0	3.8	65.3	63.3	55.8	52.8	23.0
8.0	5.3	60.8	58.8	49.7	46.7	24.5
10.0	6.0	59.3	57.3	47.8	44.8	25.0
16.0	7.6	56.2	54.2	43.7	40.7	25.0
20.0	8.5	54.8	52.8	41.8	38.8	25.0
25.0	9.5	53.3	51.3	39.8	36.8	24.3
31.25	10.7	51.9	49.9	37.9	34.9	23.6
62.5	15.4	47.4	45.4	31.9	28.9	21.5
100.0	19.8	44.3	42.3	27.6	24.8	20.1
200.0	29.0	39.8	37.8	21.8	18.8	18.0
250.0	32.8	38.3	36.3	19.8	16.8	17.3

Maximum propagation delay: 538 ns/100 m at 100 MHz (536 at 250 MHz) Maximum delay skew: 45 ns/100 m at all frequencies

Table 6.8-Category 6A Performance (100 meters)

Frequency	Insertion Loss	NEXT	PSNEXT	ACRF	PSACRF	Return Loss	PSANEXT	PSAACRF
(MHz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)
1.0	2.1	74.3	72.3	67.8	64.8	20.0	67.0	67.0
4.0	3.8	65.3	63.3	55.8	52.8	23.0	67.0	66.2
8.0	5.2	60.8	58.8	49.7	46.7	24.5	67.0	60.1
10.0	5.9	59.3	57.3	47.8	44.8	25.0	67.0	58.2
16.0	7.5	56.2	54.2	43.7	40.7	25.0	67.0	54.1
20.0	8.4	54.8	52.8	41.8	38.8	25.0	67.0	52.2
25.0	9.4	53.3	51.3	39.8	36.8	24.3	67.0	50.2
31.25	10.5	51.9	49.9	37.9	34.9	23.6	67.0	48.3
62.5	15.0	47.4	45.4	31.9	28.9	21.5	67.0	42.3
100.0	19.1	44.3	42.3	27.8	24.8	20.1	67.0	38.2
150.0	23.7	41.7	39.7	24.3	21.3	18.9	67.0	34.7
200.0	27.6	39.8	37.8	21.8	18.8	18.0	64.5	32.2
250.0	31.1	38.3	36.3	19.8	16.8	17.3	62.5	30.2
300.0	34.3	37.1	35.1	18.3	15.3	16.8	61.0	28.7
350.0	37.2	36.1	34.1	16.9	13.9	16.3	59.6	27.3
400.0	40.1	35.3	33.3	15.8	12.8	15.9	58.5	26.2
450.0	42.7	34.5	32.5	14.7	11.7	15.5	57.4	25.1
500.0	45.3	33.8	31.8	13.8	10.8	15.2	56.5	24.2

Maximum propagation delay: 538 ns/100 m at 100 MHz Maximum delay skew: 45 ns/100 m at all frequencies

100-ohm Unshielded Twisted Pair (UTP) vs Shielded Twisted Pair

There are two basic types of electromagnetic interference (EMI) that cable engineers worry about - EMI emissions and EMI immunity. Emissions refer to energy that is radiated by the cable that might affect the proper operation of a neighboring circuit or system. Immunity is the ability of the cable to reject outside signals that might interfere with the proper operation of the circuit or system to which the cable is attached.

Electromagnetic interference is present in all types of cabling to some degree. In local area networks (LANs), failure to properly manage EMI can have an adverse effect on the integrity of the transmitted information.

Shielded cables generally use an aluminum or copper shield to provide protection. When properly grounded (connected) to the associated electronic equipment, the shield acts as a barrier to incoming as well as outgoing EMI.

In an unshielded (UTP) cable, careful design of the cable and the associated electronic equipment results in a "balance" of the currents in the two conductors of a pair. That is, the currents in the two conductors are equal in magnitude but flowing in opposite directions. In a balanced system, there is very little radiation of EMI since the external field from one conductor is effectively canceled by the external field from the other conductor of the pair.

Generally, the more twists per foot in the conductor pairs of the cable, the better the cable is electrically balanced. For example, Category 5e cable has more twists per foot than Category 3 cable and, therefore, offers better protection from EMI problems.

6.7.4 IBM Cabling System

The IBM Cabling System is a structured building wiring system that is compatible with IEEE 802.5 (Token Ring) networks and equipment. Cable types consist of various combinations of shielded data grade media (DGM) and non-shielded voice grade media (VGM). Cable types include "Type 1," which is a 2-pair DGM cable, "Type 2," which contains two DGM pairs plus four VGM pairs and "Type 6," which is a 2-pair DGM cable with smaller conductors (26 AWG instead of 22 AWG).

6.8 TELEPHONE

Telephone cables play a major role in modern communications. In conjunction with microwave and satellite transmission, copper and optical fiber cables provide the communication links that have become essential to society.

With the advent of optical fiber cables in the early 1980s, telephone wire and cable has generally been grouped into three broad categories: 1) fiber, 2) copper and 3) hybrid (composite) cable with both fiber and copper components under one jacket.

Telephone cable is usually classified according to its location of use. Cable used outdoors between the telephone company's central office and the building being served is referred to as outside cable, or sometimes called black cable. Wire or cable used indoors, e.g., inside homes and commercial buildings, is referred to as premises distribution wiring or more simply as inside cable.

6.8.1 Outside Cables

Outside cables typically range in size from small (2 to 6 pair) constructions, which are usually referred to as "service drop" or "buried distribution" wire (the cable installed in many residential backyards), up to large 1,500 pair "exchange" cables, which are typically installed between central offices of the telephone company. Many high pair-count copper cables have been replaced by optical fiber cables.

Exchange cables, because they are often installed in underground ducts or directly buried in the earth, are designed with various combinations of polyethylene (PE) jackets and aluminum, copper or steel sheaths. The PE jacket and metal armoring isolate signal-carrying conductor pairs from moisture, mechanical damage and lightning induced voltages.

Exchange cables are manufactured in "filled" and "unfilled" (aircore) versions. With filled cables, the interstices between insulated conductors are filled with a waterproofing gel to prevent the ingress and longitudinal movement of water. Some aircore cable designs are kept dry by pressurizing the core of the cable with dry air or nitrogen. Water is the "Achilles' heel" of outdoor telephone cable because it increases capacitance (normally 0.083 µF per mile) between the "tip" and "ring" conductors and compromises crosstalk (pair-to-pair signal coupling) performance of the cable.

The terms tip and ring are carryovers from earlier days when each twisted pair was terminated with a 1/4-inch diameter plug at a manually operated switchboard. One conductor was attached to the tip, the other to the ring of the plug.

6.8.2 Indoor Cables

Inside wire and cable is usually divided into 1) station wire and 2) inside cable (sometimes called IC). Station wire is usually 2 to 4 pair, 22 or 24 AWG wire and is typically installed in residences.

While station wire is one type of inside wire, it is usually designed for both indoor and outdoor use because it often extends to the exterior of the building. True inside cable, on the other hand, is typically larger (25 to 200 pair) 22 or 24 AWG cable, which is installed exclusively indoors in larger public and commercial buildings. Station wire and inside cables are usually used in plenum, riser, and general purpose versions. The plenum version is a highly flame retardant construction that is capable of passing the Steiner Tunnel Flame Test (NFPA-262).

Article 800 of the National Electrical Code (NEC) requires that telephone wire and cable be plenum rated when installed indoors in plenums (air handling spaces) without conduit, i.e., it must carry the marking CMP (CM for communication and P for plenum). When installed in vertical risers in multistory buildings, a riser rating, i.e., Type CMR, is required. General purpose communication cables must be labeled Type CM. Cables installed in one- and two-family dwellings must be identified as Type CMX.

6.8.3 Insulation and Jacket Materials

Two thermoplastic polymers are generally used to insulate the conductors of outdoor telephone wire and cable: polypropylene (PP) or polyethylene (PE). These polymers are used primarily because of their low dielectric constant, high dielectric strength (to withstand lightning induced overvoltages), excellent moisture resistance, mechanical toughness, extrudability in thin walls and low cost. Indoor dielectrics include PP and PE but, in addition, include FEP (fluorinated ethylene-propylene or Teflon), ECTFE (ethylene-chlorotrifluoroethylene or Halar) and PVC (polyvinyl chloride). FEP and ECTFE are used in plenum cables to provide the necessary flame retardancy and are extruded on the wire in either solid or foamed (expanded) versions.

The most important telephone wire and cable electrical characteristics and their usual units of measurement include capacitance (microfarads per mile), conductor resistance (ohm per loop-mile), crosstalk (decibel isolation between pairs) and attenuation (decibels per mile). When used for high-speed digital applications, characteristic impedance (ohm) and structural return loss (decibels) also become important.

The mechanical and chemical characteristics of telephone cable insulation are as important as the electrical characteristics. Several important mechanical and chemical characteristics include compression cut resistance, low-temperature brittleness, resistance to the base oils used in filling gels, adequate tensile and elongation properties, and acceptable long-term aging characteristics.

6.9 MILITARY

The U.S. military has developed extensive specifications for many wire and cable types used in military applications. This includes hook-up and lead wire, airframe wire, control cable and coax. A MIL-Spec wire or cable must meet rigorous performance requirements. Tests that prove the wire or cable meets the specified requirements must be conducted by the manufacturer and must be carefully documented.

Following is a partial list of military wire and cable types.

Туре	Description
MIL-C-5756	Cable and wire, portable power, rubber insulated (replaced by SAE-AS5756)
MIL-C-7078	Cable, aerospace vehicle (replaced by NEMA WC27500)
MIL-C-13294	Field wire (replaced by MIL-DTL-49104)
MIL-DTL-915	Shipboard cable (inactive for new design except outboard types)
MIL-DTL-3432	Power and special purpose cables used for ground support systems ("CO" types), 300 and 600 V $$
MIL-DTL-8777	Aircraft wire, silicone insulated, 600 V, 200°C
MIL-DTL-13486	Cable, special purpose, low tension, single and multiconductor, shielded and unshielded
MIL-DTL-16878	General purpose hook-up and lead wire
MIL-DTL-24640	Shipboard cable, lightweight
MIL-DTL-24643	Shipboard cable, low smoke
MIL-DTL-25038	Aircraft wire, inorganic fibrous/Teflon insulation, high temperature and fire resistant, engine zone wire
MIL-DTL-23053	Tubing, heat shrink (replaced by AMS-DTL-23053)
MIL-DTL-27072	Cable, power and special purpose, multiconductor and single shielded (replaced by NEMA WC27500)
MIL-DTL-27500	Aerospace and other general application wire
WIL-DTL-27 JUU	Aciospace and other Beneral application wite

Continued on next page >>

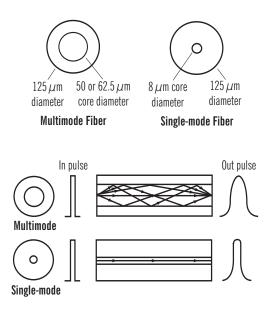
(Continued)

Туре	Description
MIL-DTL-49055	Cable, power, flat, unshielded
MIL-DTL-55021	Cable, shielded singles, twisted pairs and triples, internal hook-up
MIL-I-22129	Tubing, PTFE, nonshrink
MIL-W-76	General purpose hook-up wire
MIL-W-5845	Thermocouple wire, iron and Constantan
MIL-W-5846	Thermocouple wire, chromel and alumel
MIL-W-81822	Solderless wrap (wire wrap), insulated and uninsulated
MIL-W-47206	Cable, single conductor, twisted pairs; and multiconductor, high temperature (replaced by MIL-DTL-27500)

6.10 SHIPBOARD CABLES (MIL-DTL-24643, MIL-DTL-24640 AND MIL-DTL-915)

Due to concern about flammability, smoke and toxicity, the U.S. Navy introduced the MIL-DTL-24643 cable specification. Generally, this document provides low-smoke, fire-retardant cables that are approximately equivalent in size, weight and electricals to many of the older MIL-DTL-915 constructions.

In consideration of circuit density, weight and size, the U.S. Navy produced the MIL-DTL-24640 cable document. The cables covered by this specification are also low-smoke, fire-retardant constructions, but they are significantly lighter in weight and smaller in diameter. MIL-DTL-24640 cables are used to interconnect systems where weight and space savings are critical; however, they are not direct replacements. Because the overall diameters have been reduced and electrical characteristics may have been changed, they should not be used to replace existing MIL-DTL-915 or MIL-DTL-24643 constructions unless a comprehensive electrical and physical system evaluation or redesign has been completed.


For many years, most of the shipboard power and lighting cables for fixed installation had silicone-glass insulation, polyvinyl chloride jacket, and aluminum armor and were of watertight construction. It was determined that cables with all of these features were not necessary for many applications, especially for applications within watertight compartments and noncritical areas above the watertightness level. Therefore, for applications within watertight compartments and noncritical areas, a new family of non-watertight lower cost cables was designed. This family of cables is electrically and dimensionally interchangeable with silicone-glass insulated cables of equivalent sizes and is covered by Military Specification MIL-DTL-915.

6.11 OPTICAL FIBER CABLES

In all types of optical fiber cables, the individual optical fibers are the signal transmission media that act as individual optical wave guides. The fibers consist of a central transparent core region that propagates the optical radiation and an outer cladding layer that completes the guiding structure. The core and the cladding are typically made of pure silica glass, though other materials can be used. To achieve high signal bandwidth capabilities, the core region sometimes has a varying (or graded) refractive index.

6.11.1 Fiber Types

Figure 6.10–Optical Fiber Types

There are two basic fiber types — single-mode and multimode. Single-mode has a core diameter of 8 to 10 microns and is normally used for long distance requirements (e.g., interstate) and high-bandwidth (information carrying capacity) applications. Multimode, on the other hand, has a core diameter of 50 or 62.5 microns and is usually used intrabuilding.

Laser-optimized fibers are a fairly recent development in which 50-micron multimode fibers are optimized for 850 nm VCSEL (vertical cavity surface emitting laser) sources and can provide significantly increased bandwidth performance when compared with standard multimode fiber types. The added bandwidth of laser-optimized 50-micron fiber allows for distance support up to 550 meters for 10 Gigabit Ethernet networks as well as providing a lower overall system cost when compared with single-mode systems utilizing higher cost 1300 or 1550 laser sources. Laser-optimized fiber is referred to as "OM3" fiber in ISO/IEC-11801. OM3 fibers are also referenced by other industry standards, such as the TIA-568 wiring standards and Institute of Electrical and Electronics Engineers (IEEE). OM1 and OM2 designations are specified for standard 62.5 and 50 micron multimode fibers, respectively.

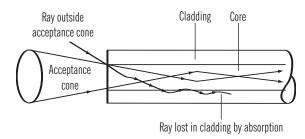
6.11.2 Fiber Selection

The three major fiber parameters used in selecting the proper fiber for an application are bandwidth, attenuation and core diameter.

Bandwidth

The bandwidth at a specified wavelength represents the highest sinusoidal light modulation frequency that can be transmitted through a length of fiber with an optical signal power loss equal to 50 percent (-3 dB) of the zero modulation frequency component. The bandwidth is expressed in megahertz over a kilometer length (MHz-km).

Attenuation


The optical attenuation denotes the amount of optical power lost due to absorption and scattering of optical radiation at a specified wavelength in a length of fiber. It is expressed as an attenuation in decibels of optical power per kilometer (dB/km).

The attenuation is determined by launching a narrow spectral band of light into the full length of fiber and measuring the transmitted intensity. This measure is then repeated for the first 1.5 to 2.5 meters of the same fiber cable without disturbing the input end of the fiber. The dB/km attenuation is then calculated and normalized to 1 km.

Core Diameter

The fiber core is the central region of an optical fiber whose refractive index is higher than that of the fiber cladding. Various core diameters are available to permit the most efficient coupling of light from commercially available light sources, such as LEDs or laser diodes.

6.11.3 Optical Fiber Cable Selection

Another important consideration when specifying optical fiber cable is the cable construction. Proper selection depends on the environment in which the cable will be installed. One of two different types of cable construction are generally employed to contain and protect the optical fibers.

Loose Buffer

The first is a loose buffer tube construction where the fiber is contained in a water-blocked polymer tube that has an inner diameter considerably larger than the fiber itself. This provides a high level of isolation for the fiber from external mechanical forces that might be present on the cable. For multifiber cables, a number of these tubes, each containing one or more fibers, are combined with the necessary longitudinal strength member. Loose buffer cables are typically used in outdoor applications and can accommodate the changes in external conditions (e.g., contraction in cold weather and elongation in warm weather).

Tight Buffer

The second cable construction is a tight buffer tube design. Here, a thick buffer coating is placed directly on the fiber.

Both constructions have inherent advantages. The loose buffer tube construction offers lower cable attenuation from a given fiber, plus a high level of isolation from external forces. This means more stable transmission characteristics under continuous mechanical stress. The tight buffer construction permits smaller, lighter weight designs and generally yields a more flexible cable. A comparison of these two cable constructions is shown below.

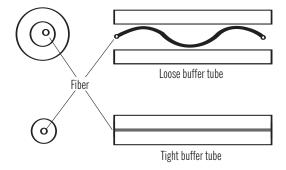


Figure 6.12–Optical Fiber Cable Designs

Table 6.9-A Comparison of Loose Tube and Tight Buffer Optical Fiber Cable

Cable Parameter	Cable Construction	
	Loose Tube	Tight Buffer
Bend radius	Larger	Smaller
Diameter	Larger	Smaller
Tensile strength, installation	Higher	Lower
Impact resistance	Higher	Lower
Crush resistance	Higher	Lower
Attenuation change at low temperatures	Lower	Higher

Strength Members

Once the optical fiber is surrounded with a buffer, either loose or tight, strength members are added to the cable structure to keep the fibers free from stress and to minimize elongation and contraction. Such strength members provide tensile load properties similar to electronic cables and, in some cases, are used as temperature stabilization elements.

Jacket

As with conventional metallic cables, the jacket protects the core from the external environment. With optical fibers, however, the selection of materials is influenced by the fact that the thermal coefficient of expansion of glass is significantly lower than that of the metal or plastic used in the cable structure.

Installation

Normal cable loads sustained during installation or environmental movements first stress the strength members without transferring the stress to the optical fibers. If the load is increased, the fiber may ultimately be placed in a tensile stress state. This level of stress may cause microbending losses that result in attenuation increase and possibly fatigue effects.

6.12 TRAY CABLES

Tray cables are a special class of cables designed to meet stringent flame test requirements. A tray cable rating is given to a cable if it can meet the UL or CSA Standard for the rating. To obtain the rating, a cable must pass the 70,000 BTU, UL 1685 Vertical Tray Flame test or the Vertical Flame Test described in CSA C22.2 No. 0.3 (See Section 11.2 Fire Safety Tests for additional information).

In effect, a cable does not have a tray cable rating unless it is so marked, for example "for CT use" or "Type TC." Electrical inspectors will usually reject a cable even if it is capable of passing the tray cable fire test unless it is clearly marked on the cable as being a tray-rated cable.

A summary of applicable UL Standards, listings and markings is shown in Table 6.10. Note that, in some cases, the tray rating is an optional marking and is not an inherent part of the listing. Other UL and CSA Types that can be installed in tray in accordance with the NEC include CL2, CL2R, CL2P, CL3, CL3P, CM, CMR, CMP, CMG, FPL, FPLR, FPLP, OFN, OFNR and OFNP.

Table 6.10-Tray Cable Listings and Markings

Standard	UL Listings (Types)	Optional Markings
UL 4	AC	For CT use
UL 13	PLTC	Direct burial Sunlight resistant ER (Exposed Run)
UL 44	XHHW-2 RHW-2, RHH, RH SIS, SA	For CT use Sunlight resistant Oil resistant Pump cable
UL 444	CM, CMR, CMP	Sunlight resistant
UL 1072	MV	For CT use Direct burial Sunlight resistant Oil resistant
UL 1277	TC	Direct burial Sunlight resistant Oil resistant ER (Exposed Run) LS (Limited Smoke)
UL 1424	FPL, FPLR, FPLP	Direct burial Sunlight resistant CI (Circuit Integrity) Limited combustible Wet location
UL 1425	NPLF, NPLFR, NPLFP	Direct burial Sunlight resistant CI (Circuit Integrity) Limited combustible Wet location
UL 2250	ITC	Direct burial Sunlight resistant Wet location